Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
نویسندگان
چکیده
Understanding the complexities associated with contact line dynamics on chemically heterogeneous and superhydrophobic surfaces is important for a wide variety of engineering problems. Despite significant efforts to capture the behavior of a droplet on these surfaces over the past few decades, modeling of the complex dynamics at the three-phase contact line is needed. In this work, we demonstrate that contact line distortion on heterogeneous and superhydrophobic surfaces is the key aspect that needs to be accounted for in the dynamic droplet models. Contact line distortions were visualized and modeled using a thermodynamic approach to develop a unified model for contact angle hysteresis on chemically heterogeneous and superhydrophobic surfaces. On a surface comprised of discrete wetting defects on an interconnected less wetting area, the advancing contact angle was determined to be independent of the defects, while the relative fraction of the distorted contact line with respect to the baseline surface was shown to govern the receding contact angle. This behavior reversed when the relative wettability of the discrete defects and interconnected area was inverted. The developed model showed good agreement with the experimental advancing and receding contact angles, both at low and high solid fractions. The thermodynamic model was further extended to demonstrate its capability to capture droplet shape evolution during liquid addition and removal in our experiments and those in literature. This study offers new insight extending the fundamental understanding of solid-liquid interactions required for design of advanced functional coatings for microfluidics, biological, manufacturing, and heat transfer applications.
منابع مشابه
بررسی اثر پلیاتیلن گلایکول بر رفتار ترشوندگی سطوح آبگریز ZnO تهیه شده بهروش رسوبدهی حمام شیمیایی
A superhydrophobic ZnO surface was prepared on the stainless steel mesh by a one-step chemical bath deposition method without chemical post-treatment. The effect of adding polyethylene glycol 6000 (PEG 6000) as an organic additive and the type of the alkaline agent were investigated on the morphological and wettability properties of ZnO surfaces. The prepared surfaces were characterized by X-ra...
متن کاملDrop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures
Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophob...
متن کاملAdvanced understanding of stickiness on superhydrophobic surfaces
This study explores how contact angle hysteresis and titling angle relate with stickiness on superhydrophobic surfaces. The result indicates that contact angle hysteresis could not be mentioned as a proper factor to evaluate the surface stickiness. By analyzing the system pinning force of droplet placed on a titled surface, we concluded that both solid fraction and surface geometric factor are ...
متن کاملTunability of the Adhesion of Water Drops on a Superhydrophobic Paper Surface via Selective Plasma Etching
We report the fabrication of a sticky superhydrophobic paper surface with extremely high contact angle hysteresis: advancing contact angle ∼150◦ (superhydrophobic) and receding contact angle ∼10◦ (superhydrophilic). In addition, we report the controlled tunability of the contact angle hysteresis from 149.8 ± 5.8◦ to 3.5 ± 1.1◦, while maintaining superhydrophobicity, as defined through an advanc...
متن کاملWettability and Contact Time on a Biomimetic Superhydrophobic Surface
Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 28 45 شماره
صفحات -
تاریخ انتشار 2012